Chaotic Time Series Prediction using the Kohonen Algorithm
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1. Introduction.

In the last decades many different techniques have been developed for the analysis and prediction of time series, ranging from the well-known Box and Jenkins models[1] to the latest neural based ones[2,3,4].

The most used approach consists in considering the time series as a realization of a stochastic process and to apply the different methods devised in the framework of Statistics to obtain a model for the process[1,3,5,6].

Today, with the latest results concerning deterministic chaos, even if the data look random apparently it is important to consider the possibility that the time series was generated by a low order nonlinear deterministic dynamical system[7,8,9].

One of the techniques developed within the Chaos Theory formalism for the analysis of time series is deterministic nonlinear prediction[9].

In this paper the use of a Kohonen network as a component of one deterministic nonlinear prediction algorithm is suggested. The algorithm was originally proposed by Lorenz[10] and later modified by Ikeguchi and Aihara[9] and is known as the Modified Method of Analogues (MMA).

The paper is organized as follows: In section 2 the MMA is explained and in the next section the proposed prediction algorithm is introduced. In section 4 some experiments are conducted to evaluate the performance of the algorithm and the results are discussed. Finally, the main conclusions are highlighted.

2. The Modified Method of Analogues.

This method was introduced by Lorenz in 1969 and was named “The Method of Analogues” because the prediction of a point in the attractor is obtained analogizing the movement of its nearest neighbor. In 1995, Ikeguchi and Aihara proposed to use M nearest neighbors instead of only one neighbor to find the prediction of the point and named its algorithm “The Modified Method of Analogues”.
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where w(.) is a weighting function depending only on the distances between its arguments and p is the prediction step.

Our aim with this work is to use a Kohonen network that properly trained with the different points on the attractor could be used to obtain the neighbors [image: image11.wmf]i

k

v

of the point [image: image12.wmf]T

v

. This imply that the complete prediction process could be done extremely fast ( once the network has learned the neighborhood  relations present on the attractor ) because of the high degree of parallelism associated with the Kohonen neural network.

3. The proposed prediction algorithm.

As it was mentioned in the previous section, we expect the Kohonen algorithm could be used to learn the metric relationships between the points on the reconstructed attractor and later it can be included as a part of the MMA without significant loss on the accuracy of predictions. Therefore, two different stages should be clearly separated:

· The training phase.

· The prediction phase.

In the next subsections these two stages will be carefully described.

3.1. The training process.

The well-known Kohonen algorithm was introduced by Teuvo Kohonen in 1982 as a model of the self-organization of the neural connections[11].

We will give a brief overview about this artificial neural network and its main features ( including some statements we added ), but the interested reader could find more comprehensive descriptions in [11-14]. We are going to follow the notations used by Cottrell et. al.[14].

The network has n units distributed in a one or two-dimensional array. There exists a neighborhood function ( defined on IxI ( I being the set of the units ) that depends only on the distance between two units of I (((i,j) decreases with increasing distance between I and j ).

The input space ( is a subset of (d endowed with a distance ( in this paper the Euclidean distance is used ).

The units are fully connected to the d input units ( Figure 1 ) and we can represent the unit i by its weight vector:
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We also included an index NDXI that is a reference to the point in the attractor which is nearest to neuron i.

Then, the state of the network at time t is completely defined by:
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For a given state X, the network response to input v is the wining unit io, which is the neuron whose weight vector Xio is the closest to input v.
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	Figure 1. The bidimensional Kohonen network.


This network implements what is called a “topology preserving map” in the sense that, as far as possible, neighbors in the input space are mapped onto neighboring neurons[14]. This property of the network is the most important in our attempt to use it as an ordered representation of the attractor generated by the time series we want to predict. In most real applications only one variable can be measured from the chaotic dynamical system, a scalar time series that can be designated by y(t) (t=1,2,…,N). If the state space of the system has dimension m, we can reconstruct the attractor from the time series using the method of time delayed vectors proposed by Takens[15] with the restriction:


de ( 2df + 1







(4)

where de is the embedding dimension of the reconstructed attractor and df is the fractal dimension of the original attractor of the system.

Then, the vectors of the reconstructed attractor are obtained the following form:


v(t)=(y(t),y(t+(),…,y(t+(de-1)())





(5)

where ( is the time delay.

Now, the modified Kohonen algorithm can be written as follows:

1. At time t=0, for every unit i(I , the vector values Xi(0) are sampled at random and the index in the attractor of its nearest point is assigned to NDXi(0).

2. If X(t) is the current state at time t:

· Present an input v(T) chosen in ( (( is the set of the points on the reconstructed attractor and T is the index of that point in the attractor ) according to a distribution (.

· Compute the best matching unit io by: dist(Xio(t),v(T))= min dist(Xj(t),v(T)) (j(I)
· Update the weights by: Xi(t+1)=Xi(t)-(t((io,i)(Xi(t)-v(T)), ( i(I.
· If dist(Xio(t),v(T))< dist(Xio(t),v(NDXio(t))) then NDXio(t+1)=T.
With the above algorithm the Kohonen network can be trained taking  the points on the reconstructed attractor as the inputs ( we used the points from the first half of the time series ). Once the learning process has finished the network can be incorporated as a part of the prediction algorithm.

3.2. The prediction phase.

The idea is to substitute the search for the nearest neighbors of the point vT  by the wining unit io ( taking vT as the input to the network ) and its closest neighbors ( Figure 2 ). Then, every selected unit ij in the network has a reference ( NDX ij ) to a point in the attractor and these points are taken as the [image: image16.wmf]i
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. After that, the prediction is found as in the MMA.
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	Figure 2. The wining unit io and its nearest neighbors ij.


We can explicitly write down the prediction algorithm.

Let vT be the point on the attractor which future evolution will be predicted.

1. Present the input vT to the network ( previously trained with the points of the reconstructed attractor ) and choose the wining unit io.

2. Find the neighbors of unit io selecting the units ij with ((io,ij) lower than a certain threshold (  ( j=1,2,…,P ) ( it can also be used a fixed number of neighbors as in the MMA ).

3. Find the [image: image18.wmf]i
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in the original attractor using the indexes NDXij of every selected neuron ij (j=0,1,…,P):
[image: image19.wmf])

(

j

i

i

k

NDX

v

v

=
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 using equation (1) as in the MMA.

4. Application of the prediction algorithm to computer generated time series.

In order to evaluate the performance of the proposed algorithm, we applied it to the prediction of time series generated by different chaotic dynamical systems and also to a random time series to see if it can be useful to distinguish between chaos and noise.

The first chaotic system chosen was the logistic equation that is defined as:


Xt+1=aXt(1-Xt)







(6)

We have taken a=3.8 and X0=0.23489 as in [16].

As the other chaotic systems we selected the Hénon and the Ikeda Maps used in [9].

The Hénon map is described by the following two equations:


X1(t+1)=1+X2(t)-aX1(t)2

X2(t+1)=bX1(t)







(7)

The parameters a and b took the values 1.4 and 0.6 respectively[9] and the initial conditions were both 0.

The Ikeda map is described by:


X1(t+1)=q+b(X1(t)cos((t)-X2(t)sin((t))


X2(t+1)=    b(X1(t)sin((t)+X2(t)sin((t))




(8)

In this case ((t)=k-(/(1+X1(t)2+X2(t)2) and the parameters q, k, ( and b were fixed at 1.0, 0.4, 6.0 and 0.7 respectively[9]. The initial conditions were both 0.

Finally, the random time series was generated from a gaussian random noise with zero mean.

For all the systems previously mentioned, time series of different lengths N ( N=128, 256, 512, 1024, 2048 ) were generated but discarding 10000 points from the initial state ( considered as transient ). After that, the attractors were reconstructed using the method of delays[15] ( described in section 3 ) with the delay time (=1 and the embedding dimension ( reconstruction dimension ) de=2 in all cases ( Figure 3 ).
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	Figure 3. The reconstructed attractors from the time series ( 2048 points ) generated by the different systems. a) Hénon map. b) Logistic map. c) Ikeda map. d) Random time series.


Next, different Kohonen networks ( one for  each generated time series ) were trained with the points of the attractors and the prediction algorithm was applied to predict the rest of the points of each time series that were not used during training. It is important to mention that the networks were trained for 50000 iterations and had a small number of neurons ( from 49 to 100 ) due to the limitations of our computational equipment. Every 1000 iterations ( epochs ) the learning process was stopped and the prediction algorithm was applied to evaluate the performance of the complete method during training.

To quantify the performance of the algorithm we find the Correlation Coefficient ( CC ) and the Relative Root Mean Square Error ( RRMSE ) between the real and predicted time series[9].

The results of the application of the proposed prediction method are shown in Figures 6 and 7. In all cases the values plotted are the averaged values between the 5 time series generated from each system.
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	Figure 6. Averaged values of the Relative Root Mean Square Error for the time series generated from each system. a) Logistic Map. b) Hénon Map. c) Ikeda Map. d) Random time series.
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	Figure 7. Averaged values of the Correlation Coefficient for the time series generated from each system. a) Logistic Map. b) Hénon Map. c) Ikeda Map. d) Random time series.


As it can be seen from  Figures 6 and 7 the values of the RRMSE and the CC corresponding to the chaotic dynamical systems ( a), b), c) ) clearly demonstrate the ability of the proposed algorithm to make succesful predictions of chaotic time series.

In the case of the random time series ( d) ), a complete different behavior of the RRMSE and CC can be observed because of the underlying determinism in the MMA. This feature can be used to develop a test to distinguish between chaos and noise.

Finally, in Table 1 are shown the results of the prediction of a time series of 128 points generated by the Ikeda map, demonstrating that the predictions obtained by the proposed method are as accurate as the ones found using the MMA.

Table 1. Prediction performances of the proposed algorithm and the MMA on a time series (128 points) of the Ikeda Map.

	Prediction Method
	RRMSE
	CC

	Proposed algorithm
	0.3883
	0.9244

	Modified Method of Analogues
	0.3392
	0.9420


5. Conclusions.

1. The Kohonen network can effectively learn the neighborhood relations present in the reconstructed attractor of the time series.

2. The MMA can thus be implemented using a Kohonen network as one of its components obtaining the benefits of the high parallelism of this neural network without significant loss on the accuracy of predictions.

3. The proposed prediction algorithm can be used to develop a test to identify determinism  in time series.
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